Parallel matrix function evaluation via initial value ODE modeling
نویسندگان
چکیده
منابع مشابه
Parallel Spectral Division via the Generalized Matrix Sign Function
In this paper we demonstrate the parallelism of the spectral division via the matrix sign function for the generalized nonsymmetric eigenproblem. We employ the so-called generalized Newton iterative scheme in order to compute the sign function of a matrix pair. A recent study has allowed considerable reduction (by 75%) in the computational cost of this iteration, making this approach competitiv...
متن کاملParallel Methods for Initial Value Problems
As scientiic technology becomes increasingly more sophisticated, the production of more data and/or the modelling of more complex systems requires computers with ever-increasing computational power. In order to cope with this situation numerical algorithms have to be developed which allow the distribution of both data and code segments over large numbers of processors with the hope that problem...
متن کاملModeling with ODE
2 Modeling with ODE 2 2.1 Compartment Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2.2 Chemical Reactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.2.1 Elementary Reactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.2.2 Complex Reactions . . . . . . . . . . . . . . . . . ...
متن کاملSolutions of initial and boundary value problems via F-contraction mappings in metric-like space
We present sufficient conditions for the existence of solutions of second-order two-point boundary value and fractional order functional differential equation problems in a space where self distance is not necessarily zero. For this, first we introduce a Ciric type generalized F-contraction and F- Suzuki contraction in a metric-like space and give relevance to fixed point results. To illustrate...
متن کاملC Dependence on Initial Conditions for ODE
Lemma 0.1 Let (X, d1) and (Y, d2) be metric spaces. Form the metric space (X × Y, d) where d ((x1, y1), (x2, y2)) = d1(x1, x2) + d2(y1, y2). Suppose that for each x ∈ X we have a function ux ∈ Cb(Y ), the space of bounded continuous functions from Y to R . (Here l is fixed.) Suppose moreover that for each x0 ∈ X, lim x→x0 ‖ux − ux0‖ = 0. (Here ‖‖ denotes sup norm on Y .) For x ∈ X, y ∈ Y , put ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computers & Mathematics with Applications
سال: 2016
ISSN: 0898-1221
DOI: 10.1016/j.camwa.2016.04.036